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Abstract. Among all the contemporary digital ecosystems, endpoint devices, including computers, servers,

and IoT gadgets, represent at once the most important and the most vulnerable part of the infrastructure of

any organization. Traditional security solutions very often cannot identify subtle and sophisticated threats that

reveal their presence only through deviations from normal behavior. This paper presents the application of

unsupervised machine learning methods-namely, Isolation Forest, One-Class Support Vector Machines, Gaussian

Mixture Models and Local Outlier Factor-for real-time anomaly detection in endpoint devices. The efficacy, for

this purpose, is shown in this paper using comprehensive telemetry data such as CPU usage, memory consumption,

and network traffic, whether anomalies due to security breaches or system malfunction can be detected using these

techniques.
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1 Introduction

Nowadays, information systems are becoming more complex, and thus the level of related security
risks, including monitoring of network events and endpoint health, is correspondingly growing.
An endpoint is a remote computing device that communicates back and forth with a network to
which it is connected. Some examples of endpoints are desktops, laptops, smartphones, servers,
workstations and Internet-of-things (IoT) devices - like security cameras, smart thermostats
and smart home assistants. For a long time, monitoring of endpoint health has been done using
signature-based antivirus systems. However, these methods have begun to lose their effectiveness
(Patcha & Park, 2007). Firstly, they become helpless against zero-day threats because there is no
known signature; secondly, systems based on these methods require regular updates to maintain
an up-to-date database of malware signatures; and most importantly it is very difficult for
such systems to recognize the signature of a malware if it has been modified using obfuscation
techniques.
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Malwares are constantly evolving and creating new threats. It is important to have security
solutions that can recognize these new threats without the need of regular updates. One of the
most effective methods that can be helpful to solve this problem is machine learning methods.
These methods can monitor the endpoint and many of its systems, including network activity,
or the activity of different hardware devices and learn the behaviour of the endpoint.

An anomaly is anything that deviates from what is standard or expected (Hawkins, 1980).
The process of finding such unexpected and non-standard behaviours in an endpoint we call
anomaly detection. There are many anomaly detection algorithms, such as: statistical meth-
ods, rule-based methods, supervised and unsupervised machine learning methods, deep learning
methods etc. However not all these methods can be useful in endpoint anomaly detection,
the main criterias for the effectiveness of an algorithm are its performance, memory and CPU
consumption, detection accuracy and possibility of continuous learning.

Some studies have explored machine learning techniques for intrusion detection systems for
IoT endpoint devices. For instance, Sai Kiran et al. (2020) developed machine learning classifier
such as Support Vector Machines and AdaBoost to identify attacks in IoT network. Another
study by Vinayakumar et al. (2019) highlighted the potential of models such as Convolutional
Neural Networks, Autoencoders and Recurrent Neural Networks to improve scalability and
reliability of cyber threat detectors.

Many of these methods are dependent on supervised learning, which requires labeled data
for training. In real world scenarios, endpoint telemetry data is not labelled, which makes it
difficult to use those methods for real-time anomaly detection. Unsupervised machine learning
is an optimal approach for anomaly detection due to the fact that it does not require labeled
data for training.

The objective of this paper is to provide a comprehensive review and analysis of four un-
supervised machine learning methods for real-time anomaly detection in endpoints: Isolation
Forest, One-Class Support Vector Machines (SVM), Gaussian Mixture Models (GMM), and
Local Outlier Factor (LOF). By evaluating these methods on real endpoint telemetry data, we
aim to determine their suitability for detecting anomalies in endpoint devices and to provide
insights into their performance characteristics.

2 Background

This section delves into key definitions, concepts and terminologies that form the basis of our
study.

Definition 1 (Endpoint). An endpoint is a computing device or node that is connected to a
network and communicates back and forth with the network to which it is connected.

Definition 2 (Anomaly). Given a dataset X = {x1,x2, . . . ,xN}, an anomaly xi ∈ X is a data
point that significantly differs from the majority of the data according to a defined metric or
model.

In endpoint security, anomalies may indicate unusual system behaviour caused by malicious
activities, hardware failures, software bugs or any other unexpected events. Anomalies aren’t
necessarily malicious, but they can also be related to endpoint behaviour not seen before.

Definition 3 (Anomaly Detection). Anomaly detection is the process of identifying anomaly
data points in a dataset.

Definition 4 (Real-Time Anomaly Detection). Real-time anomaly detection is the process
of identifying anomaly data points in a dataset as as they occur, with minimal delay.

In the context of endpoint security, this entails the continuous monitoring of the status of
the endpoint, coupled with the analysis of new data for any anomalies that may be identified.
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Definition 5 (Endpoint Telemetry). Endpoint Telemetry is data that is continuously col-
lected from the endpoint. This data can include logs, metrics and other types of information
that reflects the state of the endpoint.

In this paper, the most basic endpoint metrics were taken as telemetry. At the same time,
these basic indicators are the most important ones on monitoring endpoints:

• CPU usage (x1): The percentage of CPU resources utilized by the endpoint.

• Memory usage (x2): The amount of memory (RAM) consumed by the endpoint.

• Video memory usage (x3): The memory used by the graphics processing unit (GPU).

• Disk read/write rate (x4, x5): The rate of data read from or written to the disk.

• Network traffic (x6, x7): The volume of data transmitted over the network.

• Process count (x8): The number of active processes running on the endpoint.

• Average process CPU usage (x9): The average CPU usage of active processes.

• Average process memory usage (x10): The average memory usage of active processes.

• Total active connections (x11): The number of active network connections.

• Count of unique IPs (x12): The count of unique IP addresses connected to the endpoint.

These indicators form a multidimensional data point x = [x1, x2, . . . , x12]
> ∈ R12 for each

time interval. The data is stored in a structured format and preprocessed to handle missing
values and normalise scales (Dempster et al., 1977).

2.1 Unsupervised Machine Learning for Real-Time Anomaly Detection

In real world scenarios, endpoint telemetry data is not labelled, making it difficult to use su-
pervised machine learning for anomaly detection. Unsupervised machine learning is an optimal
approach for anomaly detection due to the fact that it does not require labeled data for train-
ing. Unsupervised methods analyse the entire dataset and identify patterns in it, then based on
these patters determines the data points that least fit the pattern and labels these data points
as anomalies.

Definition 6 (Unsupervised Learning). Unsupervised machine learning is a type of ma-
chine learning that learns from data without human supervision. Unlike supervised learning
unsupervised machine learning models are given unlabeled data and allowed to discover pat-
terns and insights without any explicit guidance or instruction.

Unsupervised machine learning methods are also optimal for real-time anomaly detection due
to their working principle (Tan et al., 2011). After continuous training of a model for a certain
period of time (e.g 1 month), the model establishes a baseline pattern of normal behaviour (Bifet
& Gavaldà, 2009). Subsequently, as new data is occured, the model can compare it against its
learned patterns, efficiently identifying deviations that suggest potential anomalies.
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Figure 1: Timeline of anomaly detection methodology.

Figure 2: Training period.

2.2 Continuous Anomaly Detection Methodology

This paper puts forth a methodology for the continuous detection of anomalies, as illustrated in
Figure 1. The methodology comprises two principal phases, delineated by a dashed line.

The first phase consists of two periods: data collection period, which includes the collection
of endpoint telemetry data from the system monitoring module followed by preprocessing of
collected data, and the model training period (Figure 2).

Following initial training phase, the model has already developed patterns based on the data
collection period data. These patterns enable the model to recognise anomalies in preprocessed
data points as new data occure in telemetry collection module. Each new data point is not only
analysed by the anomaly detection module, but also stored for the upcoming retraining phase
of the model (Figure 3).

Figure 3: Detection period.

It is important to note that the data collection time in the first period of the paper’s anomaly
detection methodology can be called a hyperparameter of the whole methodology, as it can be
customised depending on the endpoint’s requirements. In dynamic endpoints such as laptops
and personal computers, which may have a lot of different behaviours, this time can be long (4-7
weeks), because for successful analysis it is necessary to collect data on all possible behaviours
of the endpoint before starting the analysis for anomalies. In the case of less dynamic endpoints,
such as those represented by the IoT devices, the data collection period can be reduced to a
shorter timeframe (3-12 days). This is due to the fact that such endpoints exhibit a limited range
of behavioural patterns, which can be more efficiently captured within a shorter data collection
window.

Another hyperparameter of the methodology is the data collection time in the anomaly
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detection period. All stored data points after a certain period of time are passed to the model
for retraining. This time should be shorter than the initial time for the main training phase of
the model. Furthermore, it is advisable to consider the level of dynamism of the endpoint on
training model.

Model training time in Figure 1 shown large than it will be in real world application. This
was done for the purpose of good and clear illustration. In real applications this time will be
longer in the first period when the model is trained on a large amount of data from first main
data collection period, and shorter when it is retrained on a smaller amount of data. It is
important to note that this time strongly depends on the training model. Training time will
different significantly on different models. Therefore, it is very important to chose the right
models for the training.

3 Methods

In this section of the paper, different unsupervised machine learning methods are discussed and
their suitability for the endpoint anomaly detection is analysed. The methods described in this
section were tested using all given features on real data that was collected from an endpoint
within one hour. During this period, telemetry from the endpoint was collected at 10-seconds
intervals, then it was preprocessed and stored for model training. Telemetry dataset is consists
of a total of 354 data points. The first 283 data points were selected as train data, and the
remaining 71 for the test. Dataset can be found on author’s GitHub repository (Asgarov, 2024).

To test the effectiveness of the described methods, it is necessary to add a certain number
of anomalies to the test data. But anomalies in itself is a data points that significantly differs
from other data points by definition, for example, it can be a strong increase or decrease in the
metrics of a data point, or a strong change in the proportions of the data point metrics. In
the test data of this paper, 53 data points were simulated by increasing some of the metrics of
data points by a certain percentage. Detailed values of increase percentage also can be found
on author’s GitHub repository (Asgarov, 2024).

Therefore due to the simulation over the data we have clear labels for each data point in
the dataset. Consequently, during the evaluation of the methods, we can use the evaluation
methods that are usually used for supervised machine learning methods – confusion matrix and
classification report.

Definition 7 (Confusion Matrix). A confusion matrix is a table that summarizes the perfor-
mance of a classification model by showing the counts of actual versus predicted classifications.
For a binary classification problem, the confusion matrix is a 2 × 2 matrix with the following
structure: [

TN FP
FN TP

]
,

where:

• True Positive (TP): The number of data points that are correctly predicted as the
positive class.

• False Positive (FP): The number of data points that are incorrectly predicted as the
positive class (but are actually negative).

• False Negative (FN): The number of data points that are incorrectly predicted as the
negative class (but are actually positive).

• True Negative (TN): The number of data points that are correctly predicted as the
negative class.
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While the confusion matrix provides a detailed breakdown of the model’s predictions com-
pared to the actual classifications, it can be further analyzed to derive more insightful per-
formance metrics. To quantify the model’s effectiveness in terms of precision, recall, and the
balance between them, a classification report is used.

Definition 8 (Classification Report). A classification report is a summary that evaluates
the performance of a classification model by presenting key metrics for each class in the dataset.
For binary or multi-class classification problems, the report includes the following metrics for
each class:

• Precision: The ratio of true positives to the sum of true positives and false positives. It
measures the accuracy of positive predictions for a class.

• Recall (Sensitivity): The ratio of true positives to the sum of true positives and false
negatives. It assesses the model’s ability to find all relevant instances of a class.

• F1-Score: The harmonic mean of precision and recall. It provides a balance between
precision and recall, especially useful when dealing with imbalanced datasets.

• Support: The number of actual occurrences of each class in the dataset.

3.1 Isolation Forest

Isolation Forest is an ensemble anomaly detection algorithm that isolates anomalies instead of
profiling normal data points (Liu et al., 2000). By recursively partitioning the data using random
feature selection and split values, it efficiently identifies anomalies as data points that require
fewer splits to isolate. We formally define the Isolation Forest as follows.

Definition 9 (Isolation Forest). An Isolation Forest consists of t isolation trees built from
subsamples of the data. Each isolation tree T is constructed by recursively partitioning a
dataset X using randomly selected features and split values until each data point is isolated.
The anomaly score for an x is calculated based on the average path length E[h(x)] across all
trees:

s(x, n) = 2
−E[h(x)]

c(n) , (1)

where c(n) is the average path length of searches in a Binary Search Tree (Cormen et al., 2001):

c(n) = 2H(n− 1)− 2(n− 1)

n
,

and H(i) is the harmonic number defined as H(i) = ln(i) + γ with γ ≈ 0.57721 . . . being the
Euler-Mascheroni constant (Abramowitz et al., 1965).

The anomaly score s(x, n) quantifies the degree of abnormality of x, with higher scores
indicating higher likelihoods of being anomalies.

3.1.1 Algorithm Details

Isolation Forest operates under the principle that anomalies are “few and different” and thus
more susceptible to isolation through random partitioning. The algorithm comprises two main
processes: building the isolation trees and calculating anomaly scores.

Each isolation tree is constructed by recursively partitioning the data. Starting with a
subsample X ′ of size ψ randomly selected from the dataset X, the tree is build as follows. At
each node, a feature q is randomly selected from the set of features. A split value p is then
randomly chosen between the minimum and maximum values of feature q in the data at that
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node. The data is partitioned into two child nodes based on whether the feature value is less
than or greater than or equal to p. This process continues recursively for each child node until
one of the termination conditions is met: either the node contains only one data point, or the
tree reaches a predefined maximum depth.

The anomaly score for an x is calculated using the average path length E[h(x)] across all
trees. The path length hj(x) is the number of edges traversed from the root node to the
terminating node in tree Tj . The average path length is computed as E[h(x)] = 1

t

∑t
j=1 hj(x).

The anomaly score is then determined using the formula (1).

3.1.2 Experimental Results

Method was tested using python library scikit-learn (Pedregosa et al., 2011) with the data
discussed at the beginning of the section 3. Jupyter notebooks of the this method and all other
methods can be found on author’s GitHub repository (Asgarov, 2024). Tests were done using
different values of hyperparameters ψ which is a subsample size used to construct each isolation
tree described in section 3.1.1 and t which respresent the number of isolation trees in the forest
described in definition 9. Method results for different values of hyperparameters are shown in
Table 1.

Table 1: Classification metrics for Isolation Forest with different values of t and ψ.

t ψ Accuracy Precision Recall F1-Score

100 100 0.9577 1.0000 0.8333 0.9091
50 100 0.9577 1.0000 0.8333 0.9091
100 75 0.9437 1.0000 0.7778 0.8750
100 50 0.9296 1.0000 0.7222 0.8387
50 75 0.9296 1.0000 0.7222 0.8387
50 50 0.9155 1.0000 0.6667 0.8000
50 20 0.9014 1.0000 0.6111 0.7586
25 40 0.8873 1.0000 0.5556 0.7143
50 5 0.8310 0.6500 0.7222 0.6842
25 10 0.8732 1.0000 0.5000 0.6667

Best result of this method was F1-Score of 0.91. To visualise this result a pair plot was
constructed (Figure 4). The pair plot highlights how specific pairs of features interact. For
instance, there is a notable separation between normal and anomalous data when comparing
CPU usage with RAM usage, suggesting that anomalies affect both CPU and RAM usage in a
distinguishable way.

The confusion matrix of the method’s best results is as follows:[
53 0
3 15

]
.

The confusion matrix shows that the model correctly identified 53 anomalies (True Negatives)
and 15 normal points (True Positives). It produced 3 false negatives (missed anomalies) and
no false positives (normal points classified as anomalies). This demonstrates excellent precision
for normal data and a high specificity for anomalies, although the model has a slightly lower
recall for anomalies due to the missed cases. Overall, the Isolation Forest method shows strong
performance with minimal misclassifications.

3.2 One-Class Support Vector Machines

The One-Class Support Vector Machine (One-Class SVM) is an unsupervised learning algorithm
derived from the traditional Support Vector Machine framework. While traditional SVMs are
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Figure 4: Isolation Forest Pair Plot Visualisation.

supervised learning methods used for classification and regression tasks with labeled data, One-
Class SVM is specifically designed for anomaly detection in unlabeled datasets (Schölkopf et al.,
2001). It aims to learn a decision function that identifies regions in the input space where the
probability density of the data resides, thereby enabling the detection of outliers or anomalies
that fall outside this region.

Definition 10 (One-Class SVM). Given a set of training data {xi}Ni=1, where xi ∈ RD, the
One-Class SVM seeks a hyperplane in the feature space F , induced by the mapping φ : RD → F ,
that best separates the data from the origin with maximum margin. This is formulated as the
following optimization problem:

min
w,ρ,ξi

1

2
|w|2 +

1

νN

N∑
i=1

ξi − ρ subject to (w>φ(xi)) ≥ ρ− ξi, ξi ≥ 0, i = 1, . . . , N,

where w ∈ F is the normal vector to the hyperplane, ρ ∈ R is the offset from the origin, ξi ≥ 0
are slack variables allowing for some errors, and ν ∈ (0, 1] is a parameter controlling the trade-off
between the fraction of outliers and the margin of the hyperplane.

The One-Class SVM constructs a decision function f(x) that indicates whether a new data
point x is similar to the training data (normal) or not (anomalous). The decision function is
given by:

f(x) = sgn

(
N∑
i=1

αiK(xi,x)− ρ

)
,

where K(xi,x) is the kernel function, and αi are the solution to the dual optimization problem.

3.2.1 Algorithm Details

The One-Class SVM algorithm involves solving an optimization problem to find the hyperplane
that best separates the data from the origin in the feature space. By introducing Lagrange
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multipliers αi, the problem can be transformed into its dual form:

max
αi

− 1

2

N∑
i,j=1

αiαjK(xi,xj) subject to 0 ≤ αi ≤
1

νN
,

N∑
i=1

αi = 1.

The kernel function K (xi,xj) computes the inner product in the feature space, allowing
the algorithm to handle non-linear separations without explicitly mapping the data to a higher-
dimensional space.

3.2.2 Experimental Results

Method was tested using python library scikit-learn with the data discussed at the beginning of
the section 3. Tests were done using different kernel functions and different values of ν. Method
results for different values of hyperparameters are shown in Table 1.

Table 2: Classification metrics for One-Class SVM with different kernel functions and ν values.

Kernel Function ν Accuracy Precision Recall F1-Score

K(xi,xj) = exp(−0.100‖xi − xj‖2) 0.001 0.9859 1.0000 0.9444 0.9714
K(xi,xj) = exp(−0.010‖xi − xj‖2) 0.010 0.9859 1.0000 0.9444 0.9714
K(xi,xj) = exp(−0.500‖xi − xj‖2) 0.100 0.9718 1.0000 0.8889 0.9412

K(xi,xj) = x>
i xj 0.001 0.2535 0.2535 1.0000 0.4045

K(xi,xj) = tanh(0.100 x>
i xj) 0.001 0.2535 0.2535 1.0000 0.4045

K(xi,xj) = x>
i xj 0.010 0.2394 0.2429 0.9444 0.3864

K(xi,xj) = tanh(0.001 x>
i xj) 0.050 0.2113 0.2206 0.8333 0.3488

K(xi,xj) = (0.500 x>
i xj + 1)3 0.050 0.1831 0.1970 0.7222 0.3095

K(xi,xj) = x>
i xj 0.050 0.1831 0.1970 0.7222 0.3095

K(xi,xj) = tanh(0.500 x>
i xj) 0.050 0.1831 0.1970 0.7222 0.3095

Best result of this method was F1-Score of 0.91. To visualise this result a pair plot was
constructed (Figure 5).

The confusion matrix of the method’s best results is as follows:[
53 0
1 17

]
The confusion matrix for this method shows 53 anomalies correctly identified (True Nega-

tives), 17 normal points correctly classified (True Positives), 1 false negatives (missed anomalies)
and 0 false positive (normal point classified as an anomaly). Compared to the Isolation For-
est method, One-Class SVM demonstrates a slight improvement in precision with fewer false
negatives.

3.3 Gaussian Mixture Models

Gaussian Mixture Models (GMMs) are a probabilistic approach for representing the presence
of subpopulations within an overall population without requiring that each data point belong
exclusively to a single subpopulation. In the context of anomaly detection, GMMs are utilized
to model the normal behavior of a system by capturing the underlying distribution of the data
(Dempster et al., 1977). Observations that do not conform to this learned distribution are
flagged as anomalies.

Definition 11 (Gaussian Mixture Model). A Gaussian Mixture Model represents the probability
density function (PDF) of a dataset as a weighted sum of K Gaussian (normal) component
densities. The PDF of the GMM is given by:
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Figure 5: One-Class SVM Pair Plot Visualisation.

p(x | Θ) =
K∑
k=1

πkN (x | µk,Σk) ,

where:

• x ∈ RD is a D-dimensional data point,

• Θ = {πk,µk,Σk}Kk=1 represents the set of parameters of the model,

– πk is the mixing coefficient for component k, such that
∑K

k=1 πk = 1 and 0 ≤ πk ≤ 1,

– µk ∈ RD is the mean vector of component k,

– Σk ∈ RD×D is the covariance matrix of component k,

• N (x | µk,Σk) is the multivariate Gaussian density function:

N (x | µk,Σk) =
1

(2π)D/2 |Σk|1/2
exp

(
−1

2
(x− µk)

>Σ−1k (x− µk)

)
.

The goal is to estimate the parameters Θ that maximize the likelihood of the observed data
{xi}Ni=1.

3.3.1 Parameter Estimation with Expectation-Maximization

The Expectation-Maximization (EM) algorithm is employed to iteratively estimate the parame-
ters of the GMM. The EM algorithm consists of two main steps: the Expectation step (E-step)
and the Maximization step (M-step).

In the Initialization phase, initial guesses are made for the parameters Θ(0) =
{
π
(0)
k ,µ

(0)
k ,Σ

(0)
k

}
for k = 1, . . . ,K
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γ
(t)
ik =

π
(t−1)
k N

(
xi | µ(t−1)

k ,Σ
(t−1)
k

)
∑K

j=1 π
(t−1)
j N

(
xi | µ(t−1)

j ,Σ
(t−1)
j

)
In the M-Step, the parameters are updated using the responsibilities computed in the E-

step:

π
(t)
k =

Nk

N
, µ

(t)
k =

1

Nk

N∑
i=1

γ
(t)
ik xi, Σ

(t)
k =

1

Nk

N∑
i=1

γ
(t)
ik

(
xi − µ

(t)
k

)(
xi − µ

(t)
k

)>
where Nk =

∑N
i=1 γ

(t)
ik is the effective number of data points assigned to component k.

The Convergence criterion is based on the log-likelihood of the data given the model
parameters:

L(Θ) =
N∑
i=1

ln

(
K∑
k=1

πkN (xi | µk,Σk)

)
The EM algorithm iteratively performs the E-step and M-step until the change in log-

likelihood L(Θ) between iterations falls below a predefined threshold, indicating convergence.
After training, the GMM models the probability density function of the normal data. For

a new data point xnew , the likelihood p (xnew | Θ) is computed using the GMM. An anomaly
score is defined as the negative log-likelihood:

S (xnew ) = − ln p (xnew | Θ)

A threshold τ is set to classify observations as normal or anomalous. If S (xnew ) > τ , the
observation is considered anomalous. The threshold τ can be determined based on the desired
false positive rate or by analyzing the distribution of anomaly scores on a validation dataset.

3.3.2 Experimental Results

Method was tested using python library scikit-learn with the data discussed at the beginning of
the section 3. Tests were done using different covariance types and different values of τ and K.
Method results for different values of hyperparameters are shown in Table 3.

Table 3: Classification metrics for Gaussian Mixture Model with different hyperparameters.

K Covariance Type τ Accuracy Precision Recall F1-Score

1 full 0.5 1.0000 1.0000 1.0000 1.0000
4 diag 0.5 1.0000 1.0000 1.0000 1.0000
4 tied 2.0 1.0000 1.0000 1.0000 1.0000
1 spherical 2.5 0.9577 1.0000 0.8333 0.9091
1 spherical 2.0 0.9296 1.0000 0.7222 0.8387
1 spherical 1.5 0.9014 1.0000 0.6111 0.7586
1 spherical 1.0 0.8873 1.0000 0.5556 0.7143
1 spherical 0.5 0.8873 1.0000 0.5556 0.7143

The confusion matrix of the method’s best results is as follows:[
53 0
0 18

]
The confusion matrix for this method shows 53 anomalies correctly identified (True Nega-

tives) and 18 normal points correctly classified (True Positives), with no false positives (normal
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Figure 6: Gaussian Mixture Models Pair Plot Visualisation.

points classified as anomalies) and no false negatives (missed anomalies). Compared to the
Isolation Forest and One-Class SVM methods, the Gaussian Mixture Model (GMM) success-
fully detected all anomalies and achieved perfect classification without any misclassifications,
indicating both strong recall and precision.

3.4 Local Outlier Factor

The Local Outlier Factor (LOF) algorithm is an unsupervised anomaly detection method that
identifies anomalies based on the concept of local density (Breunig et al., 2000). It measures the
degree to which a data point is isolated from its surrounding neighborhood. In the context of
endpoint anomaly detection, LOF can detect observations that have a significantly lower density
than their neighbors, indicating abnormal behavior.

Definition 12 (Local Outlier Factor). Given a dataset X = {x1,x2, . . . ,xN} ⊂ RD and a
positive integer parameter k specifying the number of nearest neighbors, the Local Outlier
Factor of a data point x, denoted as LOFk(x), quantifies the extent to which x is an outlier. It
is defined based on the following concepts:

1. k-distance of x : The k-distance of x, denoted as k-distance( x), is the distance between
x and its k-th nearest neighbor.

2. k-distance neighborhood of x : Denoted as Nk(x), it includes all points y ∈ X such
that the distance d(x,y) ≤ k-distance (x).

3. Reachability distance: The reachability distance between x and y is defined as:

reach-dist k(x,y) = max{k-distance (y), d(x,y)}

4. Local reachability density: The local reachability density of x is given by:

lrdk(x) =

(∑
y∈Nk(x)

reach-dist k(x,y)

|Nk(x)|

)−1
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5. Local Outlier Factor: The LOF of x is defined as:

LOFk(x) =

∑
y∈Nk(x)

lrk(y)
ldk(x)

|Nk(x)|

A higher value of LOFk(x) indicates that the point x has a significantly lower density than
its neighbors, suggesting that it is an outlier.

3.4.1 Algorithm Details

Implementing LOF involves several steps. First, compute the pairwise distances between data
points to identify the k-nearest neighbors for each point. Then, calculate the reachability dis-
tances for each point based on its k-nearest neighbors. Next, compute the local reachability
density for each point using the reachability distances. Subsequently, calculate the LOF score
for each point by comparing its local reachability density to those of its neighbors. Finally,
classify points as normal or anomalous based on the LOF scores and the chosen threshold τ .

Careful attention must be paid to computational efficiency, especially when dealing with
large datasets. Techniques such as indexing structures (e.g., k-d trees) or approximate nearest
neighbor algorithms can be used to reduce computation time.

Selecting the parameter k is a critical aspect of applying the LOF algorithm effectively. One
approach is to experiment with multiple values of k and evaluate the algorithm’s performance
on validation data. Considering the average density of the dataset and the expected size of local
neighborhoods can inform the choice of k. In practice, values of k ranging from 10 to 30 are
commonly used, but the optimal value depends on the specific characteristics of the data.

3.4.2 Experimental Results

Method was tested using python library scikit-learn with the data discussed at the beginning of
the section 3. To visualise results a pair plot was constructed (Figure 7).

Method was tested using python library scikit-learn with the data discussed at the beginning
of the section 3. Tests were done using different values of τ and k. Method results for different
values of hyperparameters are shown in Table 3.

Table 4: Classification metrics for Local Outlier Factor with different hyperparameters.

k τ Accuracy Precision Recall F1-Score

30 0.15 1.0000 1.0000 1.0000 1.0000
20 0.15 0.9859 1.0000 0.9444 0.9714
30 0.30 0.9718 1.0000 0.8889 0.9412
15 0.15 0.9718 1.0000 0.8889 0.9412
15 0.30 0.9577 1.0000 0.8333 0.9091
30 0.40 0.9437 1.0000 0.7778 0.8750
25 0.40 0.9296 1.0000 0.7222 0.8387
10 0.30 0.9296 1.0000 0.7222 0.8387
20 0.40 0.9155 1.0000 0.6667 0.8000
15 0.40 0.9014 1.0000 0.6111 0.7586
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Figure 7: Local Outlier Factor Pair Plot Visualisation.

The confusion matrix of the method’s best results is as follows:[
53 0
0 18

]
The Local Outlier Factor (LOF) method achieved perfect classification, correctly identifying

all 53 anomalies (True Negatives) and all 18 normal data points (True Positives), resulting in
no false positives or false negatives.

4 Conclusion

This paper investigated unsupervised machine learning techniques for real-time anomaly detec-
tion in endpoints using a novel continuous anomaly detection methodology. Paper provided
a detailed description of the methodology and its core working principles. Four unsupervised
machine learning methods were considered as part of the detection framework: Isolation For-
est, One-Class Support Vector Machines (SVM), Gaussian Mixture Models (GMM), and Local
Outlier Factor (LOF).

All methods were trained using real endpoint telemetry data collected over a one-hour period.
Part of this telemetry was modified to simulate anomalies and used as test data. Pair plot
visualizations were utilized to illustrate the separation between anomalies and normal data across
different features. Furthermore, confusion matrices and classification reports were calculated for
each method to evaluate their performance comprehensively.

Experimental results identified that both Gaussian Mixture Model (GMM) and Local
Outlier Factor (LOF) methods achieved the highest overall accuracy, precision, recall and
f1-score. Those methods detected anomalies with no false positives or false negatives, making
them ideal choice for real-time anomaly detection monitoring systems. Isolation Forest and
One-Class SVM method also showed good performance with low false positive rate and remain
viable options.
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